Алгоритмы Machine Learning в Python

Наиболее распространенными инструментами Data Scientist’а на сегодняшний день являются R и Python. У каждого инструмента есть свои плюсы и минусы, но неплохую позицию по всем параметрам занимает Python. Для Питона есть отлично документированная библиотека Scikit-Learn, в которой реализовано большое количество алгоритмов машинного обучения.

Здесь мы остановимся на алгоритмах Machine Learning. Первичный анализ данных лучше обычно проводится средствами пакета Pandas, разобраться с которым можно самостоятельно. Итак, сосредоточимся на реализации, для определенности полагая, что на входе у нас есть матрица обьект-признак, хранящаяюся в файле с расширением *.csv

Загрузка данных

В первую очередь данные необходимо загрузить в оперативную память, чтобы мы имели возможность работать с ними. Сама библиотека Scikit-Learn использует в своей реализации NumPy массивы, поэтому будем загружать *.csv файлы средствами NumPy. Загрузим один из датасетов из репозитория UCI Machine Learning Repository:

Далее во всех примерах будем работать с этим набором данных, а именно с матрицей обьект-признак X и значениями целевой переменной y.

Нормализация данных

Всем хорошо знакомо, что большинство градиентных методов (на которых, по-сути, и основаны почти все алгоритмы машинного обучения) сильно чуствительны к шкалированию данных. Поэтому перед запуском алгоритмов чаще всего делается либо нормализация, либо так называемая стандартизация. Нормализация предполагает замену номинальных признаков так, чтобы каждый из них лежал в диапазоне от 0 до 1. Стандартизация же подразумевает такую предобработку данных, после которой каждый признак имеет среднее 0 и дисперсию 1. В Scikit-Learn уже есть готовые для этого функции:

Отбор признаков

Не секрет, что зачастую самым важным при решении задачи является умение правильно отобрать и даже создать признаки. В англоязычной литературе это называется Feature Selection и Feature Engineering. В то время как Feature Engineering довольно творческий процесс и полагается больше на интуицию и экспертные знания, для Feature Selection есть уже большое количество готовых алгоритмов. «Древесные» алгоритмы допускают расчёта информативности признаков:

Все остальные методы так или иначе основаны на эффективном переборе подмножеств признаков с целью найти наилучшее подмножество, на которых построенная модель даёт наилучшее качество. Одним из таких алгоритмов перебора является Recursive Feature Elimination алгоритм, который также доступен в библиотеке Scikit-Learn:

Построение алгоритма

Как уже было отмечено, в Scikit-Learn реализованы все основные алгоритмы машинного обучения. Рассмотрим некоторые из них.

Логистическая регрессия

Чаще всего используется для решения задач классификации (бинарной), но допускается и многоклассовая классификация (так называемый one-vs-all метод). Достоинством этого алгоритма является то, что на выходе для каждого объекта мы имеем вероятность принадлежности классу

Наивный Байес

Также является одним из самых известных алгоритмов машинного обучения, основной задачей которого является восстановление плотностей распределения данных обучающей выборки. Зачастую этот метод дает хорошее качество в задачах именно многоклассовой классификации.

K-ближайших соседей

Метод kNN (k-Nearest Neighbors) часто используется как составная часть более сложного алгоритма классификации. Например, его оценку можно использовать как признак для объекта. А иногда, простой kNN на хорошо подобранных признаках даёт отличное качество. При грамотной настройке параметров (в основном — метрики) алгоритм даёт зачастую хорошее качество в задачах регрессии

Деревья решений

Classification and Regression Trees (CART) часто используются в задачах, в которых объекты имеют категориальные признаки и используется для задач регрессии и классификации. Очень хорошо деревья подходят для многоклассовой классификации

Метод опорных векторов

SVM (Support Vector Machines) является одним из самых известных алгоритмов машинного обучения, применяемых в основном для задачи классификации. Также как и логистическая регрессия, SVM допускает многоклассовую классификацию методом one-vs-all.

Помимо алгоритмов классификации и регрессии, в Scikit-Learn имеется огромное количество более сложных алгоритмов, в том числе кластеризации, а также реализованные техники построения композиций алгоритмов, в том числе Bagging и Boosting.

Оптимизация параметров алгоритма

Одним из самых сложных этапов в построении действительно эффективных алгоритмов является выбор правильных параметров. Обычно, это делается легче с опытом, но так или иначе приходится делать перебор. К счастью, в Scikit-Learn уже есть немало реализованных для этого функций

Для примера посмотрим на подбор параметра регуляризации, в котором мы по очереди перебирают несколько значений:

Иногда более эффективным оказывается много раз выбрать случайно параметр из данного отрезка, померить качество алгоритма при данном параметре и выбрать тем самым лучший:

Мы рассмотрели весь процесс работы с библиотекой Scikit-Learn за исключением вывода результатов обратно в файл.

Источник

Дополнительно загляните в статью Топ-10 data mining алгоритмов, в которых более подробно и понятно можно посмотреть принцип работы некоторых алгоритмов и посмотреть их реализацию как в Python, так и в R.

Data Scientist # 1

Машинное обучение, большие данные, наука о данных, анализ данных, цифровой маркетинг, искусственный интеллект, нейронные сети, глубокое обучение, data science, data scientist, machine learning, artificial intelligence, big data, deep learning

Данные — новый актив!

Эффективно управлять можно только тем, что можно измерить.
Copyright © 2016-2021 Data Scientist. Все права защищены.