1. Схема решения задач глубокого машинного обучения

    Обобщенный процесс решения задачи глубокого машинного обучения: 1. Определение задачи и создание набора данных. 2. Выбор меры успеха. 3. Выбор протокола оценки. 4. Предварительная подготовка данных. 5. Разработка модели, более совершенной, чем базовый случай. 6. Масштабирование по вертикали: разработка модели с переобучением. Поиск границы между недообучением и переобучением. 7. Регуляризация...
  2. Когда стоит использовать глубокое обучение

    Глубокое обучение стоит использовать, когда: более простые модели (логистическая регрессия) не дают требуемой верности; требуется распознавать сложные паттерны в изображениях, NLP или звуковых данных; размерность данных велика; входные данные обладают временным измерением (последовательности). Когда стоит ограничиться традиционным машинным обучением Традиционное машинное обучение стоит использовать, когда: имеются высококачественные данные низкой размерности,...
  3. Глубокое обучение на Python: краткое содержание и выводы

    Примечание-спойлер: обязательно приобретите себе экземпляр этой книги, если вовлечены в сферу data science, ML, DL. Хотел разбить на несколько частей, но лучше оставить один лонгрид. Книга Франсуа Шолле «Глубокое обучение на Python» написана для людей с опытом программирования на Питоне, желающих начать знакомство с технологиями глубокого обучения. Будет интересна и...
  4. Шпаргалки по data science (cheat sheets)

    Несколько читшитов по data science. Про Python, машинное обучение, нейросети, Keras, Spark, визуализацию данных. Основное Python Basics Cheat Sheet Scipy Linear Algebra Cheat Sheet Манипуляции с данными NumPy Basics Cheat Sheet Pandas Data Wrangling Cheat Sheet Основы Pandas xts Cheat sheet data.table Cheat Sheet Tidyverse Cheat Sheet Машинное обучение, глубокое...
  5. Машинное обучение на больших данных

    Рассмотрим библиотеку MlLib в Spark и покажем, как решать задачи машинного обучения — классификации, регресии, кластеризации, а также коллаборативной фильтрации. Кроме этого покажем, как можно исследовать признаки с целью отбора и выделения новых (т.н. Feature Engineering). Вектора Для простых «плотных» векторов есть специальный класс Vectors.dense:   Для «разреженных» векторов...
  6. Тренировки по машинному обучению

    Набор видео-тренировок по решению задач с помощью методов машинного обучения. Участие в соревнованиях Kaggle, различных хакатонах и других конкурсах. Обзор лучших решений Все видео канала
  7. Важное качество специалиста по машинному обучению

    Может сложиться впечатление, будто самое важное качество специалиста по машинному обучению – знать как много больше разных методов и хорошо разбираться в математике. Но на практике успеха обычно добивается тот, кто правильно применяет широко известный алгоритм, а не прибегает к запутанному алгоритму, толком не понимая, как он работает. Для правильного...
  8. Простая самописная нейросеть на Питоне

    Немного самодеятельности в попытке кратко описать нейросеть на Питоне без использования специализированных библиотэк. К каждому новому листингу добавляет код предыдущего листинга, то есть он следует по мере заполнения. Создаём двуслойную нейросеть (входной слой не берется при подсчете слоев). 1. Создаем класс нейросети в Питоне 2. Добавляем функцию прямого прохода...
  9. Нейросети простыми словами

    Хорошо, когда данные можно описать понятными для алгоритма параметрами, но это не всегда возможно. Например, как в случае с голосом, изображением и текстом. К ним применяют иные методы, которые называются искусственными нейронными сетями. Обучившись на массиве предварительных данных, они обретают способность самостоятельно подбирать для себя признаки правильного ответа. Например, «посмотрев»...
  10. Как выбирать алгоритмы для машинного обучения

    Разновидности машинного обучения Обучение с учителем Алгоритмы обучения с учителем делают прогнозы на основе набора примеров. Так, чтобы предсказать цены в будущем, можно использовать курс акций в прошлом. Каждый пример, используемый для обучения, получает свою отличительную метку значения, в данном случае это курс акций. Алгоритм обучения с учителем ищет закономерности...

Data Scientist # 1

Машинное обучение, большие данные, наука о данных, анализ данных, цифровой маркетинг, искусственный интеллект, нейронные сети, глубокое обучение, data science, data scientist, machine learning, artificial intelligence, big data, deep learning

Данные — новый актив!

Эффективно управлять можно только тем, что можно измерить.
Copyright © 2019 Data Scientist. Все права защищены.