1. Глубокое обучение на Python: краткое содержание и выводы

    Примечание-спойлер: обязательно приобретите себе экземпляр этой книги, если вовлечены в сферу data science, ML, DL. Хотел разбить на несколько частей, но лучше оставить один лонгрид. Книга Франсуа Шолле «Глубокое обучение на Python» написана для людей с опытом программирования на Питоне, желающих начать знакомство с технологиями глубокого обучения. Будет интересна и...
  2. Шпаргалки по data science (cheat sheets)

    Несколько читшитов по data science. Про Python, машинное обучение, нейросети, Keras, Spark, визуализацию данных. Основное Python Basics Cheat Sheet Scipy Linear Algebra Cheat Sheet Манипуляции с данными NumPy Basics Cheat Sheet Pandas Data Wrangling Cheat Sheet Основы Pandas xts Cheat sheet data.table Cheat Sheet Tidyverse Cheat Sheet Машинное обучение, глубокое...
  3. Тренировки по машинному обучению

    Набор видео-тренировок по решению задач с помощью методов машинного обучения. Участие в соревнованиях Kaggle, различных хакатонах и других конкурсах. Обзор лучших решений Все видео канала
  4. Простая самописная нейросеть на Питоне

    Немного самодеятельности в попытке кратко описать нейросеть на Питоне без использования специализированных библиотэк. К каждому новому листингу добавляет код предыдущего листинга, то есть он следует по мере заполнения. Создаём двуслойную нейросеть (входной слой не берется при подсчете слоев). 1. Создаем класс нейросети в Питоне 2. Добавляем функцию прямого прохода...
  5. Нейросети простыми словами

    Хорошо, когда данные можно описать понятными для алгоритма параметрами, но это не всегда возможно. Например, как в случае с голосом, изображением и текстом. К ним применяют иные методы, которые называются искусственными нейронными сетями, указывает Крайнов. Обучившись на массиве предварительных данных, они обретают способность самостоятельно подбирать для себя признаки правильного ответа....
  6. Как выбирать алгоритмы для машинного обучения

    Разновидности машинного обучения Обучение с учителем Алгоритмы обучения с учителем делают прогнозы на основе набора примеров. Так, чтобы предсказать цены в будущем, можно использовать курс акций в прошлом. Каждый пример, используемый для обучения, получает свою отличительную метку значения, в данном случае это курс акций. Алгоритм обучения с учителем ищет закономерности...
  7. Распознавание образов в R

    Это подробная инструкция по распознаванию образов в R с использованием глубокой сверточной нейронной сети, предоставляемой пакетом MXNet. В этой статье приведен воспроизводимый пример, как получить 97,5% точность в задаче распознавания лиц на R. Предисловие Мне кажется, кое-какое предисловие все же нужно. Я пишу эту инструкцию исходя из двух соображений. Первое — предоставить всем...
  8. Гид по свёрточным нейронным сетям

    Введение Оригинал на английском здесь. Свёрточные нейронные сети (СНС). Звучит как странное сочетание биологии и математики с примесью информатики, но как бы оно не звучало, эти сети — одни из самых влиятельных инноваций в области компьютерного зрения. Впервые нейронные сети привлекли всеобщее внимание в 2012 году, когда Алекс Крижевски благодаря...
  9. Фреймворки для машинного обучения

    Apache Spark MLlib Apache Spark больше всего известен благодаря своей причастности к семейству Hadoop. Но этот фреймворк для обработки данных внутри памяти (in-memory) появился вне Hadoop, и до сих пор продолжает зарабатывать себе репутацию за пределами этой экосистемы. Spark превратился в привычный инструмент для машинного обучения благодаря растущей библиотеке алгоритмов,...
  10. Почему ошибаются алгоритмы машинного обучения

    Мы часто слышим о том, как очередной сложный алгоритм искусственного интеллекта начал ошибаться или стал следовать предрассудкам, которым машины не должны быть подвержены. Почему так происходит? Из-за чего появляются эти ложные положительные и отрицательные ответы и так ли это важно? Для начала давайте определим три термина из Матрицы смешения: точность,...

Data Scientist # 1

Data science, большие данные, наука о данных, анализ данных, маркетинг, искусственный интеллект, бизнес-аналитика, business intelligence, data scientist, data analysis, artificial intelligence, big data, data mining.

Данные — новый актив!

Эффективно управлять можно только тем, что можно измерить.
Copyright © 2018 Data Scientist. Все права защищены.